Nonlinear vibrations of thin hyperelastic plates
نویسندگان
چکیده
Static deflection as well as free and forced nonlinear vibration of thin square plates made of hyperelastic materials are investigated. Two types of materials, namely rubber and soft biological tissues, are considered. The involved physical nonlinearities are described through the Neo-Hookean, Mooney-Rivlin, and Ogden hyperelastic laws; geometrical nonlinearities are modeled by the Novozhilov nonlinear shell theory. Dynamic local models are first built in the vicinity of a static configuration of interest that has been previously calculated. This gives rise to the approximation of the plate’s behavior in the form of a system of ordinary differential equations with quadratic and cubic nonlinear terms in displacement. Numerical results are compared and validated in the static case via a commercial finite element software package: they are found to be accurate for deflections reaching 100 times the thickness of the plate. The frequency shift between lowand large-amplitude vibrations weakens with an increased initial deflection.
منابع مشابه
Assessing different nonlinear analysis methods for free vibrations of initially stressed composite laminated plates
In this paper, the nonlinear free vibrations of thin symmetric and non-symmetric cross-ply composite plates subjected to biaxial initial stresses are investigated. Because of their excellent properties such as specific strength and specific stiffness, composite plates have wide applications in aerospace and mechanical structures. Based on Von-Karman's strain-displacement relations and using Gal...
متن کاملA new approach for nonlinear vibration analysis of thin and moderately thick rectangular plates under inplane compressive load
In this study, a hybrid method is proposed to investigate the nonlinear vibrations of pre- and post-buckled rectangular plates for the first time. This is an answer to an existing need to develope a fast and precise numerical model which can handle the nonlinear vibrations of buckled plates under different boundary conditions and plate shapes. The method uses the differential quadrature element...
متن کاملVibrations of Circular Plates with Guided Edge and Resting on Elastic Foundation
In this paper, transverse vibrations of thin circular plates with guided edge and resting on Winkler foundation have been studied on the basis of Classical Plate Theory. Parametric investigations on the vibration of circular plates resting on elastic foundation have been carried out with respect to various foundation stiffness parameters. Twelve vibration modes are presented. The location of th...
متن کاملSome nonlinear dispersive waves arising in compressible hyperelastic plates
In this paper we study finite deformations in a pre-stressed, hyperelastic compressible plate. For small-amplitude nonlinear waves, we obtain equations that involve an amplitude parameter ε. Using an asymptotic perturbation technique, we derive a new family of two-dimensional nonlinear dispersive equations. This family includes the KdV, Kadomtsev-Petviashvili and Camassa-Holm equations.
متن کاملPost-buckling response of thin composite plates under end-shortening strain using Chebyshev techniques
In this paper, a method based on Chebyshev polynomials is developed for examination of geometrically nonlinear behaviour of thin rectangular composite laminated plates under end-shortening strain. Different boundary conditions and lay-up configurations are investigated and classical laminated plate theory is used for developing the equilibrium equations. The equilibrium equations are solved dir...
متن کامل